ENGINEERED BOUND SUB-BASES FOR ARTIFICIAL AND HYBRID TURF

Eng. Elisa Portigliatti Corporate Product Manager – Sport Line – Mapei SpA

MAPEI ALL PRODUCT LINES AND OUR SPORTS SYSTEM TECHNOLOGY

PRODUCTS FOR CERAMICS AND STONE MATERIALS
 PRODUCTS FOR RESILIENT AND TEXTILE MATERIALS
 PRODUCTS FOR WOODEN FLOORING
 PRODUCTS FOR CEMENTITIOUS AND RESIN FLOORING
 PRODUCTS FOR ACOUSTIC INSULATION
 PRODUCTS FOR BUILDING
 ADMIXTURES FOR CONCRETE
 PRODUCTS FOR STRUCTURAL STRENGTHENING
 PRODUCTS FOR THE REPAIR OF MASONRY
 PRODUCTS FOR THERMAL INSULATION
 WALL PROTECTIVE AND DECORATIVE COATINGS
 PRODUCTS FOR WATERPROOFING
 PRODUCTS FOR UNDERGROUND CONSTRUCTIONS
 ELASTIC SEALANTS AND ADHESIVES
 GRINDING AIDS FOR CEMENT

MAPECOAT TNS SYSTEM

ULTRABOND TURF SYSTEM

MAPESOIL SYSTEM

THE PITCH SUB-BASE – Horizontal drainage system

The SUB-BASE is the key element of the functionality of the entire system and its requirements are:

- ✓ **<u>Mechnical</u>**: load bearing capacity
- ✓ <u>Geometric</u>: slope and planarity
- ✓ **<u>Stability and durability</u>** over the time

SOIL STABILIZATION

SOIL STABILIZATION PROCESS

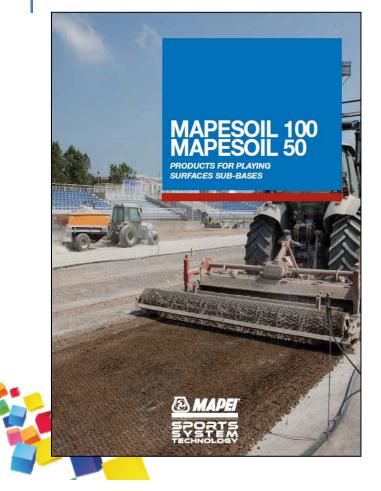
Chemical stabilization

according to CNR UNI 10006

It refers to a soil whose properties are partially or completely changed by adding a dissimilar material before compacting the soil or by injecting an additive into the soil in place.

Granulometric stabilization

according to CNR UNI 10006


It refers to the soil whose properties are emproved by adding small portion of missing aggregates in order to optimize the sieve analysis distribution.

NEW SOIL STABILIZER – MAPESOIL PECULIARITIES

- 1. Chemical features of the product
- 2. Application equipment
- 3. Design and Federation Certifications

NEW SOIL STABILIZER – MAPESOIL PECULIARITIES

1. Chemical features of the product

- ✓ Powder form
- ✓ Hydraulic reaction binder
- ✓ Fiber-reinforced (PP, 1/d ratio>600)
- ✓ Pozzolanic reaction compounds
- ✓ Higher Blaine fineness

APPLICATION EQUIPMENT - TOPSOILING

APPLICATION – MAPESOIL PACKAGING

MAPESOIL 100 MAPESOIL 50

Fiber reinforced powder soil stabilizer for sport surfaces sub-bases

APPLICATION – MAPESOIL PACKAGING

APPLICATION – MAPESOIL PACKAGING

APPLICATION – MAPESOIL SPREADING

APPLICATION – MAPESOIL UNIFORM DOSAGE

APPLICATION – MAPESOIL MIXING

APPLICATION – MAPESOIL MIXING

Stone burier mechanism

APPLICATION – WATERING

APPLICATION – GRADING AND LEVELLING

APPLICATION – ROLLING

Soil sampling for each project

1.	Soil classification			
	(according to CNR UNI 10006 – HRB AASHTO)			
2.	Compaction curve by Proctor method			
	(according toEN 13286-2)			
3.	CBR index			
	(EN 13286-47)			

- > COMPATIBILITY
- > MIXING WATER
- > STABILIZER DOSAGE

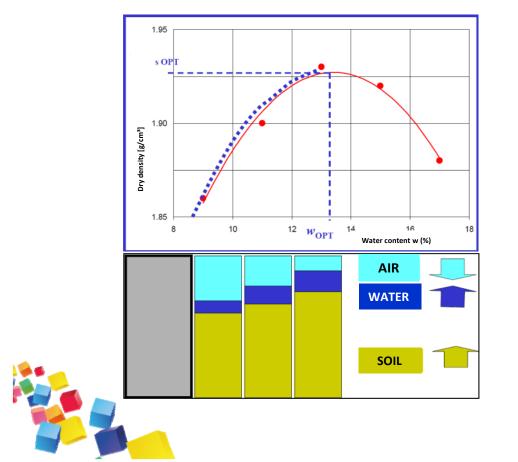
1. Soil classification

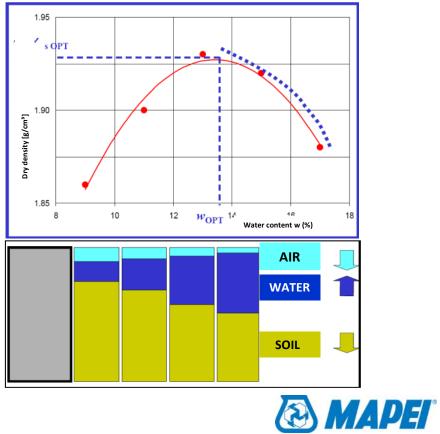
(according to UNI 11531 – HRB AASHTO)

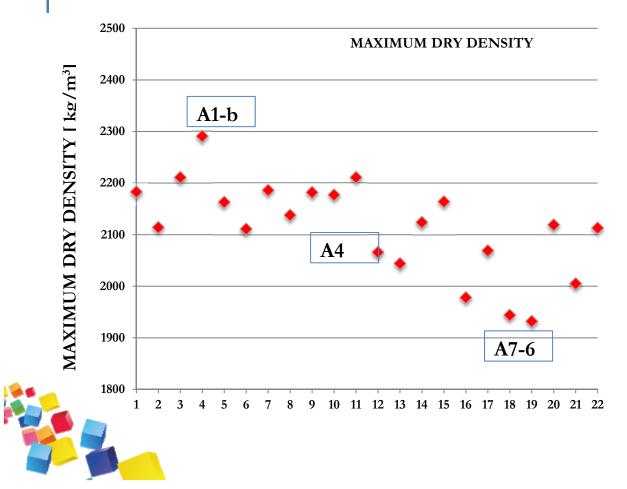
General classification	Granular materials (35% or less of total sample passing No. 200)						
	A-1			A-2			
Group classification	A-1-a	A-1-b	A-3	A-2-4	A-2-5	A-2-6	A-2-7
Sieve analysis							
(percentage passing)							
No. 10	50 max.						
No. 40	30 max.	50 max.	51 min.				
No. 200	15 max.	25 max.	10 max.	35 max.	35 max.	35 max.	35 max
Characteristics of frac-							
tion passing No. 40							
Liquid limit				40 max.	41 min.	40 max.	41 min
Plasticity index	6 n	iax.	NP	10 max.	10 max.	11 min.	11 min
Usual types of sig-	Stone fragments,		Fine	Si	lty or clayey	gravel and sa	nd
nificant constituent	gravel, a	and sand	sand				
materials							
General subgrade			E	cellent to go	od		
rating							
General classification			Silt-clay materials (more than 35% of total sample passing No. 200)				
					-	A-7 A-7-5" A-6	A-7-6
0	161						A-1-0
Group class	ification		A-4	A-	5		
Sieve analysis (percentag		· -88.88	A-4	A-	5		
Sieve analysis (percentag No. 10			A-4	A-	5		
Sieve analysis (percentag No. 10 No. 40							
Sieve analysis (percentag No. 10			A-4 36 min.	А- 36 п		36 min.	36 min
Sieve analysis (percentag No. 10 No. 40 No. 200	ge passing)	. 40	36 min.	36 п	ıin.		
Sieve analysis (percentag No. 10 No. 40 No. 200	ge passing)	. 40		36 n 41 n	iin. iin.	40 max.	41 min
Sieve analysis (percentag No. 10 No. 40 No. 200 Characteristics of fractio	ge passing)	. 40	36 min. 40 max. 10 max.	36 n 41 n 10 n	iin. iin.	40 max. 11 min.	41 min 11 min
Sieve analysis (percentag No. 10 No. 40 No. 200 Characteristics of fractio Liquid limit	ge passing) n passing No.		36 min. 40 max. 10 max.	36 n 41 n	iin. iin.	40 max. 11 min. Clayey	41 min 11 min

"For A-7-5, $PI \le LL - 30$ "For A-7-6, PI > LL - 30

Table 4.1 Classification of Highway Subgrade Materials


2. Compaction curve by Proctor method (according to EN 13286-2)


 Optimum Moisture Content (OMC) (Mixing water when applying)



OPTIMUM MOISTURE CONTENT (OMC)

MAXIMUM DRY DENSITY/SOIL TYPES

Thickness treatment: 10 cm Dosage stabilizer

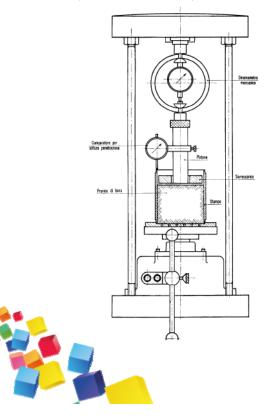
A1-b

 $2300 \ge 0,10 \ge 0,03 = 6,9 \text{ kg/m}^2$

A4

 $2000 \ge 0,10 \ge 0,03 = 6 \text{ kg/m}^2$

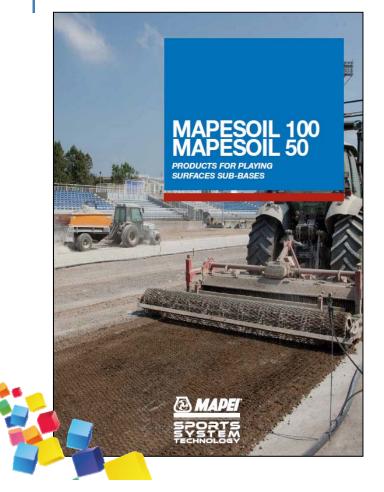
A7-6


 $1800 \ge 0,10 \ge 0,03 = 5,4 \text{ kg/m}^2$

OPTIMUM MOISTURE CONTENT/SOIL TYPES

Thickness treatment: 10 cm Mixing water	Overall mixing water quantity (7.000 m ²)
A1-b OMC: 4 ÷ 6% = 9,2 ÷ 13,8 1/m ²	A1-b 64,4 ÷ 96,6 m ³
A4 OMC: $8 \div 10\% = 16 \div 20 1/m^2$	A4 $112 \div 140 \text{ m}^3$
A7-6 OMC: 12 ÷ 26% = 21,6 ÷ 46,8 1/m ²	A7-6 151,2 ÷ 327,6 m ³

3. CBR index (Californian Bearing Ratio) (EN 13286-47)


3. CBR index (Californian Bearing Ratio) (EN 13286-47)

NEW SOIL STABILIZER – MAPESOIL PECULIARITIES

- 1. Chemical features of the product;
- 2. Application equipment;
- 3. Design and Federation Requirements.

BOUND BASE – final inspection for acceptance

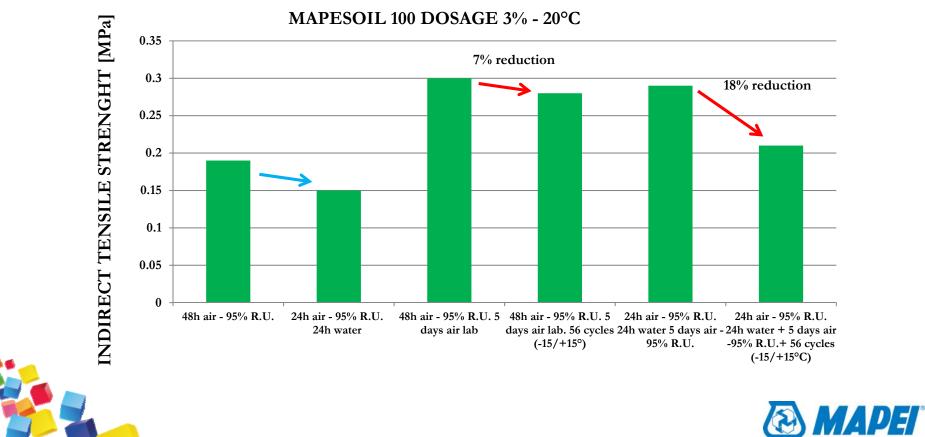
BOUND BASE – final inspection for acceptance

Bearing capacity and Elastic modulus

 $E_d > 500 \div 700 \text{ kg/cm}^2$ by using LPT Ø 300 mm

BOUND BASE – final inspection for acceptance

2. Juventus 2 IMG_1472.MOV



3. Juventus 3 IMG_1810.MOV

APPLICATION AND SERVICE LIFE CONDITIONS/SOIL TYPES

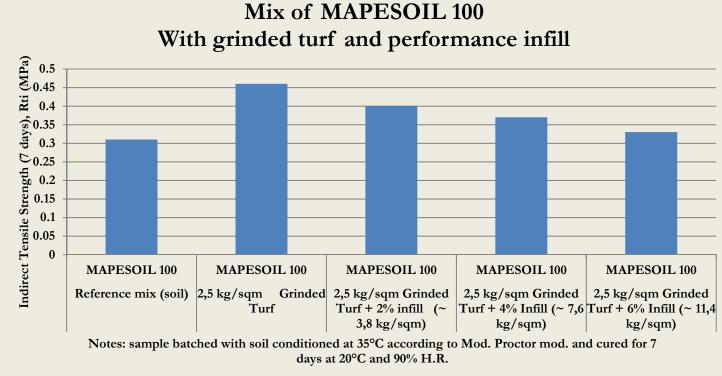
APPLICATION AND SERVICE LIFE CONDITIONS/SOIL TYPES

STRENGHT [MPa] 0.4 0.35 21% reduction 9% reduction 0.3 0.25 0.2 INDIRECT TENSILE 0.15 0.1 0.05 0 6 days - 95% R.U. 7 days air - 95% 14 days air - 95% 6 days - 95% R.U. 7 days air - 95% 6 days - 95% R.U. 24h water R.U. R.U. 24h water - 7 days R.U. + 56 cycles (- 24h water - 56 cycles air - 95% R.U. 15/+15°) (-15/+15°)

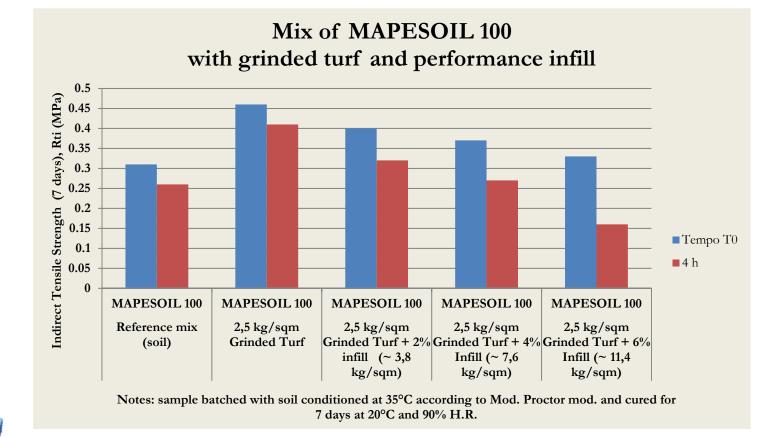
MAPESOIL 100 DOSAGE 3% - 5°C

MAPESOIL 100/50 PECULIARITIES: SOIL/AGGREGATES TYPES

- ✓ Existing rammed-earth pitches;
- ✓ Existing natural turf pitches;
- ✓ Recycled aggregate from C&D;
- ✓ Milled asphalt (RAP);
- ✓ Existing red clay tennis court.



MAPESOIL RESEARCH PROJECTS – WORN OUT TURF



MAPESOIL RESEARCH PROJECT – WORN OUT TURF

MAPESOIL RESEARCH PROJECT – WORN OUT TURF

MAPESOIL RESEARCH PROJECT – WORN OUT TURF

VIDEO SAN SIRO

WE LOVE AND SPONSOR SASSUOLO CALCIO

2004 – 2005 Mapei SpA becomes team owner: starting from amateurs league (C2)

> **Season 2012 – 2013** Sassuolo reaches for SERIE A

STADIUM – location and history

(old) name: Giglio StadiumConstruction:25.9.94-15.4.95Costs:~25 ml €Seats:25.000

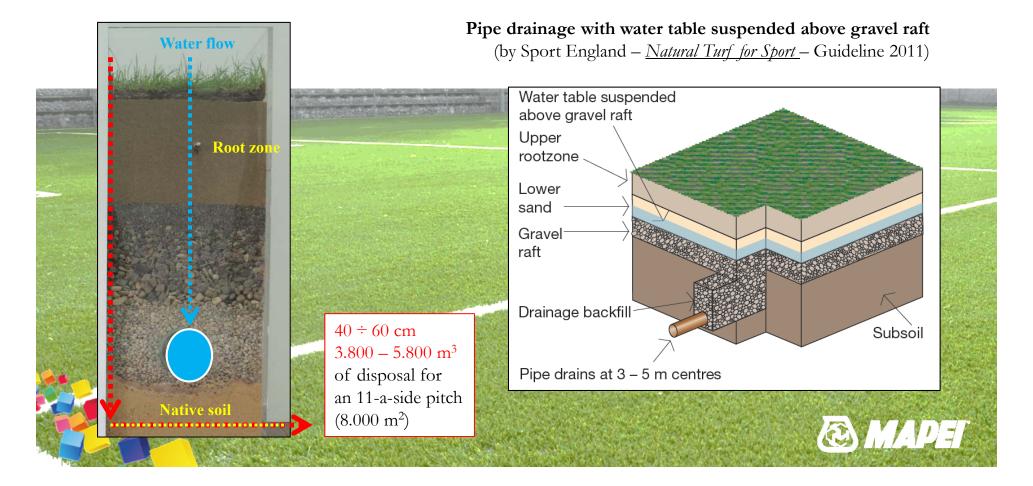
first Italian Owned stadium first stadium with «naming rights» foundrising: totally private

SERIE A FOOTBALL LEAGUE REQUIREMENTS

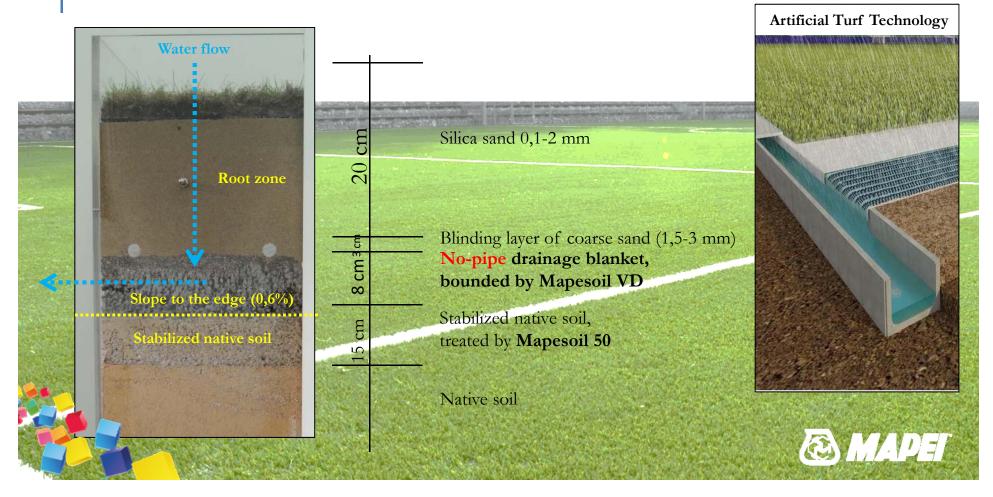
- <u>Grass cover</u>: planar, uniform, homogeneous, having proper density
 <u>Drainage</u>: high performances providing reliability in wet conditions and reducing the impact of flooding
- 3. <u>Aestetics</u>: uniform color

drainage renovation is paramount

'13 - '14 Serie A match Sassuolo – Bologna

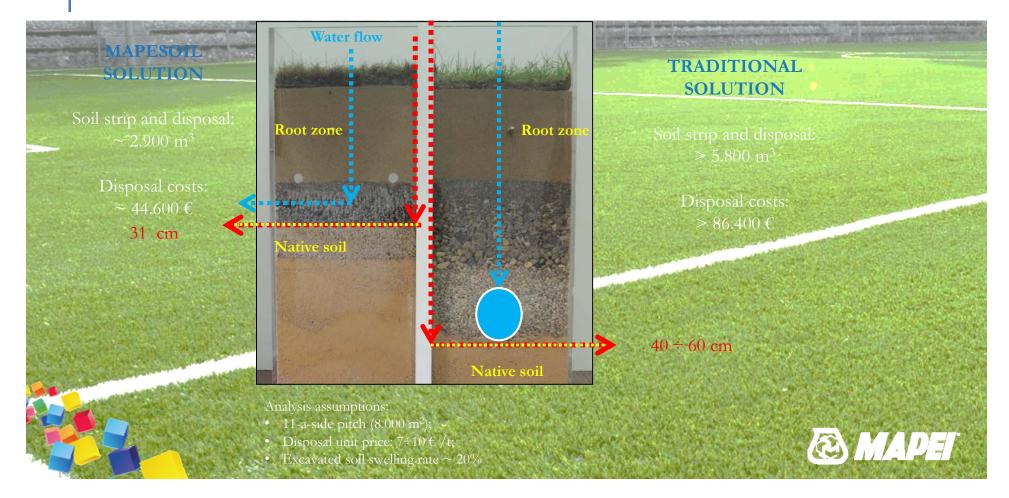


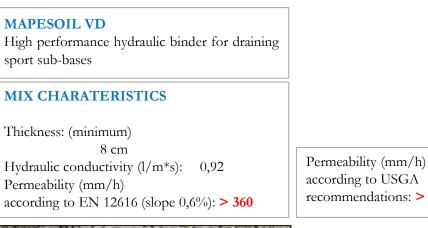
THE PITCH STATE OF THE ART


Both use of the pitch and seasonal maintenance costs are strongly affected by the *sub-base type* and *drainage efficiency*.

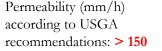
TRADITIONAL METHOD FOR RENOVATION OF THE PITCH

INNOVATIVE SOLUTION: MAPESOIL TECHNOLOGY

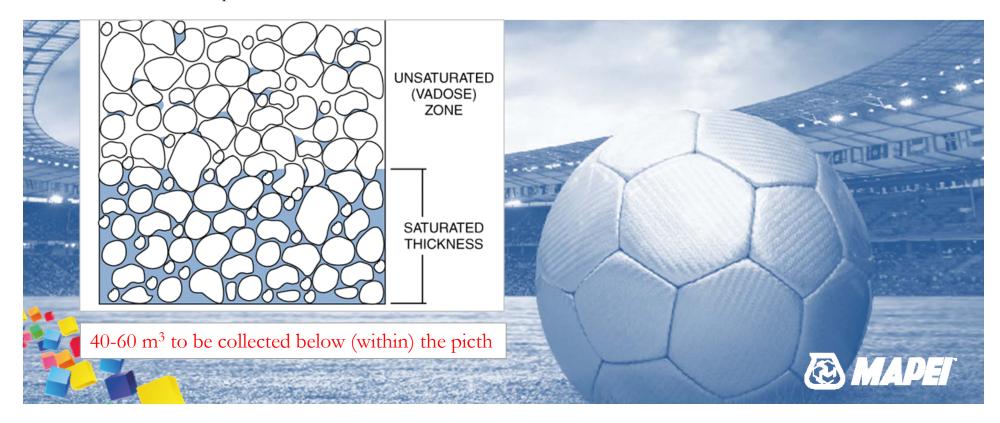

NO-PIPE DRAINAGE INSTALLATION



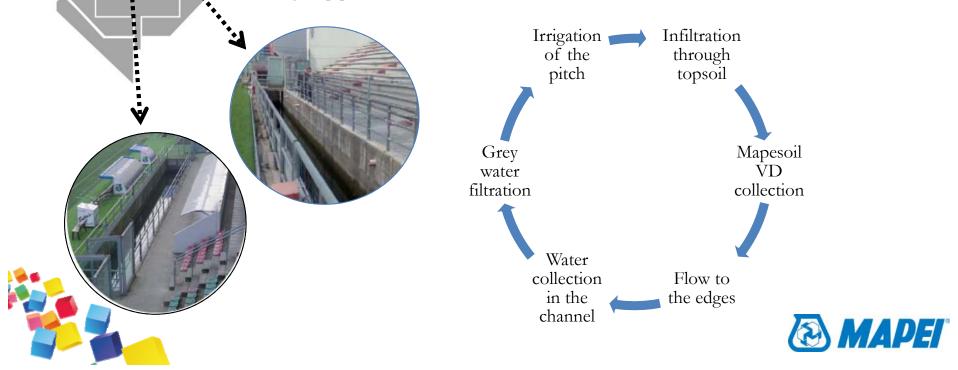
SOLUTIONS COMPARISON


DRAINAGE PROPERTIES

LABOSPORT ITALIA SRL CERTIFICATION



DRAINAGE PERFORMANCES


STORAGE CAPACITY

Each m² can store up to 80 liter of water

MAPESOIL VD WATER RE-USE

SUDS, or <u>Sustainable Urban*</u> <u>Drainage</u> <u>Systems</u> are a sequence of water management practices(1) and facilities(2) designed to drain surface water in a manner that will provide a more sustainable approach than what has been the conventional practice of routing run-off through a pipe to a watercourse.

NO PIPE DRAINAGE: KEY POINTS FOR THE PITCH MAINTENANCE

- ✓ Strong reduction of the soil stripping and removal;
- ✓ Significant cost reduction of the waste management plan;
- ✓ Higher infiltration rate of the surface when compared to the traditional pipe systems;
- ✓ Homogeneous water collection over the surface (like having pipes side by side);
- ✓ Constant humidity of the top soil and the rootzone;
- \checkmark Even performance of the playing area;
- ✓ Re-use of water collected through 'Mapesoil VD' if required;
- ✓ Reduction of heating system costs if present;
- \checkmark Grass maintenance cost reduction, with less wear of the lawn.

