ISSS MEETING

Prof. Lombardi Remo
Mauro Testa
Soccer: what are we doing?
Biomechanical analysis can help us to reduce many traumas.
Il ginocchio - the knee

Meniscus and ligaments

1 degree 2 degree 3 degree
La caviglia - the ankle

Perone
Tibia
Astragalo
Calcagno

Legamento deltoideo
L. Calcaneo navicolare
L. Peroneo astragalico anteriore
L. Peroneo calcaneare posteriore
L. Peroneo calcaneare
Tendonitis and plantar fascitis
Problems and trauma

Meazza stadium - Milan
Problems and trauma

Situations near the limit
Technical abilities
The years of tests for LND
What Bibliography said:

- The covered distances, during a match of kick from a few players (e.g.): (hit the centre them of midfield), generally exceed the 11 km. (Bangsbo 1994).
- (these distances are covers to alternate them of phases of way, of jogging and sprint and at professional level about 6000 contacts of the foot with pitch. (Lafortune can be counted et to, 1997).
- In the same match the football player makes accelerations, decelerations, direction changes and leaps (Sproviero et to, 2002).

Sproviero E., Rosati R.: Rehabilitation programs for “turf toe” injuries in soccer players.
- XIV Congress on Sports Rehabilitation and Traumatology "The Accelerated Rehabilitation of the Injured Athlete" April 9-10, 2005 - Convention Center - Trade Fair District - Bologna, Italy
 Libro degli Atti (Abstract Book) pag. 30

Cawley PW; Heidt RS; Scranton PE; Losse GM; Howard ME: Physiologic axial load, frictional resistance, and the football shoe-surface interface. Foot Ankle Int 2003 Jul; 24(7): 551-6

Sproviero E., De Vito G., Felci U., Macaluso A., Marchettoni P. – Physiological evaluation of elite young soccer players: a longitudinal study
 Medicina dello Sport. 55 vol 3 pp 181-187, 2002

Sproviero E., Rosati R., Bevilacqua F - Ruolo delle interazioni tra piede, scarpa e superfici di giuoco nei traumi della I articolazione metatarso falangea nel calciatore

Sproviero E - La scarpa da calcio quale fattore di rischio dei traumi da sport e di limitazione del rendimento di prestazione
 L'Allenatore. 2001; N° 4 : 25-27

In many situations of everyday life, vibration load occurs. Here whole body vibration in vehicles, such as boats, cars, helicopters and others as well as hand-transmitted vibration (motor saws etc.) can be named. As vibration is assumed liable to cause various threats to human health, a great number of studies in work science focussed on dose-effect relations and concepts for prevention. Although in many sports remarkable vibration load also occurs, there is very little research on the potential dangers and benefits of vibration stimuli, e.g. on whole body vibration and the implications for muscular activity and neuromuscular control in sport.
Vibration effects according literature.

- The force transfer from the ground to the tissues was compared with changes in the muscle activity.
- This increase concurred with increases in the muscle activity for the biceps femoris and lateral gastrocnemius. The evidence supports the proposal that muscle activity damps soft-tissue resonance at heel-strike.

- Vibrations encountered during inline skating resulted in modifications of neuromotor functions related to the muscle spindles' primary afferent. These changes may partially be explained by presynaptic inhibition; however, a more plausible mechanism may be a decrease in the Ia afferent transmission induced by the vibration.

- Both continuous vibrations and pulsed bursts of vibrations were presented, across the frequency range of 10-65 Hz. Elevated muscle activity and increased damping of vibration power occurred when the frequency of the input was close to the natural frequency of each soft tissue. It is suggested that soft tissue damping may be the mechanism by which resonance is minimized at heel strike during running.

- Increases in muscle activity in the lower extremities result in increased damping to reduce this vibration. These increases in myoelectric frequency match the spectral patterns which indicate increases in recruitment of faster motor units.
Protocol

START

STOP

3m

1,5m

5m

10m

START/STOP
Protocol

Tested subjects:

- 17 young men
 - ages: 16-18
 - heights: 180 ± 10 cm
 - weights: 70 ± 5 kg

 shoes of their property with fixed not plugged tappings of heels.

- shoes with conic studs
Protocol

Tested 2 natural 6 synthetic
Tests performed in:
• Winter
• Spring
• Summer
Tests performed in:
• North of Italy
• Center of Italy
• South of Italy
Trials inside every single test:
• with the insoles (Novel)
• with the accelerometers
Study of the distribution of the plantar pressures

Used instrumentation

- Pedar-X System (Nova\textsubscript{leggmbh}, Munich, Germany).
Map of the plantar pressures

• It allows to know the areas of loaded major during a perambulation/run. To codify the various pressure levels a colour stair is used.
Novel’s tools
Novel’s tools
Accelerometers

An insole as trigger

And two accelerometers positioning on the ankles
Winter Test

- The next two slides show the comparison between 1 natural turf (Olimpico, Roma) and 3 artificial turfs filled with SBR and respective energy dispersion graphs.

- The following two slides show the comparison between 1 natural turf (Olimpico, Roma) and 3 artificial turfs filled with polymeric fillers and respective energy dispersion graphs.
Winter Test

Spectrum analysis

- olimpico
- sbr A
- sbr B
- sbr C

The graph shows the spectrum analysis with different color-coded lines representing various conditions or data sets. The x-axis represents frequency (Hz) ranging from 0 to 100, and the y-axis represents acceleration (m/s²) ranging from 0 to 20.
Winter Test

Energy dispersion

- olimpico
- sbr A
- sbr B
- sbr C

(Hz)
Winter Test

Energy dispersion

0 100 200 300 400 500
(Hz)

250
200
150
100
50
0

olimpico
pol. A
pol. B
pol. C
Natural range

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>termo</td>
<td>termo</td>
<td>termo</td>
<td>sbr</td>
<td>sbr</td>
<td>sbr</td>
</tr>
</tbody>
</table>

media
• The levels of muscle activity in the lower extremities are adjusted in response to the loading rate of the impact forces.

- Muscle activity in the leg is tuned in response to ground reaction forces.

Wakeling JM, Von Tscharner V, Nigg BM, Stergiou P.
Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary.

Mechanical analysis of the landing phase in heel-toe running.

Bobbert MF, Yeadon MR, Nigg BM.

- Direct dynamics simulation of the impact phase in heel-toe running.

Gerritsen KG, van den Bogert AJ, Nigg BM.

Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary
1497.5 N
532 kPa
SINTETIC
1545.5 N
528.55 kPa
Conclusions

- **Accelerometers research**: from the graphs it turns out that there is an increase in the vibrations in turfs filled with recycled rubber. The scientific literature claims that the organism responds to these vibrations with muscle contractions in which fast motor fibers are interested. Probably, there is an increase of muscle fatigue and consequently the performances are reduced.

- **Pressure sensors research**: From the pressure data it turns out that there are not significant relevance between the fields tested.

- **Future works**:
 - It is necessary to open a dedicated piece of research to adolescents and subjects in growth.
 - It is necessary to compare the amateurs' world to that of the professionals.
 - It is necessary to open a dedicated research on boots soccer shoes for different surfaces
What is OptoJump?

OptoJump is an instrument for work and analysis which makes it possible to measure the athlete’s performance. Its optical acquisition system allows the measurement of contact and flight times during a series of jumps to a precision of 1/1000s. It consists of two bars with embedded instruments (size 100x4x3 cm), one containing the control and reception unit, the other the transmission unit. Two or more bars can be connected together to increase the length of the track used for measurement as desired.
Optojump test

Time of contact

<table>
<thead>
<tr>
<th>Tempi di contatto su Naturale</th>
<th>Tempi di contatto su Sintetico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural</td>
<td>Artificial</td>
</tr>
</tbody>
</table>

Time of fly

<table>
<thead>
<tr>
<th>Tempi di volo su Naturale</th>
<th>Tempi di volo su Sintetico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural</td>
<td>Artificial</td>
</tr>
</tbody>
</table>
Confronti Cambio direzione

<table>
<thead>
<tr>
<th>Soggetto</th>
<th>Sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soggetto1</td>
<td></td>
</tr>
<tr>
<td>Soggetto2</td>
<td></td>
</tr>
<tr>
<td>Soggetto3</td>
<td></td>
</tr>
<tr>
<td>Soggetto4</td>
<td></td>
</tr>
</tbody>
</table>

- Nat T cambio direz
- Org T cambio direz
- Ter T cambio direz

rotational movement
inside of the bars
First impressions

• Natural seems a right compromise from prevention to performance
• The new infill seems to imitate better natural fields

The producers’ research has to be addressed to imitate natural field!
Soccer boots importance

CON QUESTA DRIBBLO ANCHE IL DIVANO!

With this shoe i can make a dribbling even to a divan!
TWISTN’ GO
In Soccer, Most Movements Are Very Rapid And Over Short Distances.

This Requires An Intense Effort due to:

• Foot/Ground Friction
• The Inertial Forces in Quick Accelerations And Quick Stops
Lotto decided to study the athletes' behavior in the change of direction:

- It is a movement that needs a harder effort

If not performed in the correct way may occur injuries
TWISTIN’ GO

The Change Of Direction Occurs Under The Base Of The First Metatarsal
Twist’n Go Is The First Rotating Stud That Improves Performance And Simultaneously Reduces The Risks Of Injury
ALL STUDS ARE CONICAL AND FIXED WITH THE EXCEPTION OF ONE LOCATED IN CORRESPONDENCE OF THE ROTATING POINT. THIS STUD IS FIXED TO THE OUTSOLE TOO, BUT IT ROTATES

THE STUD PENEТRATES THE GROUND ALLOWING THE SHOE TO ROTATE
The Bigger Diameter Improves Stability During the Rotation
The Extra-grip Profile Gives a Better Traction
Created in Aluminum, Provides Higher Resistance And Longevity
Self-lubricating Ring Nut Material, Facilitates Rotation and Is Water Resistant
TWISTN’GO

By using the TWIST’NGO technology the pressure on the sole is reduced underneath the toe and better distributed over the forefoot.
TWISTN’GO

Each player in 90 minutes run from 8 to 12km
In 90 minutes he make from 1.500 to 2.000 rotational movement

TWISTN’GO RESULTS:

• Reduces foot/ground friction about 2/3%
• Increase speed of 0,16m/sec
• Reduces of about 0.16sec the time needed for a 180 degrees turn
TWISTN’G O

Speed
Provides Faster Rotation Compared To Traditional Studs; Foot/Ground Friction Is Reduced And Improves Performance

Prevention
The Foot Maintains Its Axis When Rotating; The Movement Quality Improves And Reduces The Risk of Injury

Stability
During Rotation, Balance Is Not Only Maintained but Improved; The Stud Works As a Pivot Point and Provides Higher Stability At The Point of Contact