Statistical Aspects of Measuring Uncertainties in Laboratories and Interlaboratory Tests

What are telling us the different characteristic values of the statistics of measurements in our laboratories and in interlaboratory tests (Round Robins)

"There a three kinds of lies: lies, damned lies and statistics"

Benjamin Disraeli (1804 – 1881)

withir	laborator s of tests f	y means (x ₁) or outliers) and standa	rd deviations			Number o Number o	f reporting la f reported te	boratori st result	es.p.*. εΣπ.,:	
Lab	Test results in %				Statistical evaluation of the				Outliers		
ode Vo.	2243		Test replicati	ion No. (k)		subm	itted test res	ults x _k	1	1	100
42 42 452 738 547 147 165	36,0 48,9 50,8 51,5 54,1 54,3	40,8 51,1 52,4 54,3 54,9	ng ras	ulta reported		1 2 2 2 2 2 2	32,64 49,84 50,93 52,49 54,19 54,58	0,0283 0,2404 0,0707 0,1273 0,4243			

** ... statistical outlier (99%) * ... straggler (95%)

× ... : >2

Results of robust statistics	Convergence assumed at iteration number: 20					
	Robust average: x* -	51,3	assigned value for the			
Robust standard deviation	for the proficiency assessment: $s^* =$	3,75	proficiency assessment			
Number of repeate measurements	necessary due to s , /s *-ratio: n' =	1	OK	see page 4 for the		
Standard unc	ertainty of the assigned value: $u_x =$	1,91115	NOT OK	meaning of NOT DK		

Additional check of the test method accuracy				
Do the input dat (The results listed below shall be considered as really justified only if the input	ta come from a t data come fro	normal distribution ? m a normal distribution)	YES	
General mean Σκ _i x _a / Σκ _i	m	52,4	8	
Repeatability variance Repeatability standard deviation Repeatability coefficient of variation	s, ² s, CV%,	0,0519600 0,22795 0,435	×	
Between-laboratory variance Between-laboratory standard deviation Between-laboratory coefficient of variation	s1 ¹ s1 CV %	4,1437500 2,03562 3,884	:	
Reproducibility variance s _n ² Reproducibility standard deviation Reproducibility coefficient of variation	s, 2+5, 2 5, 8 CV%,	4,1957100 2,0483 3,909	;	
Repeatability limit Relative repeatability limit	T	0,6	N N	
Reproducibility limit Relative reproducibility limit	R R _{eff}	5,7 10,94	s s	
Number of participants included in the accuracy evaluation Number of tests included in the accuracy evaluation	р Σм	5 10		

Dr. Dirk Stegemann: Some Aspects of Measuring Uncertainties in Laboratories and Interlaboratory Tests - Technical Meeting ISSS - Florence 27.10.16 - 28.10.16

What's our goal when measuring a property?

to find the true value of what we have to measure !!!
 (that's what your customer expects from you because he pays for it)

Unfortunantely the true value will only be obtained by the average of an infinite numbers of single results performed by an infinite number of laboratories.

Gaussian Bell Curve or Normal Distribution

Dr. Dirk Stegemann: Statistical Aspects of Measuring Uncertainties in Laboratories and Interlaboratory Tests -Technical Meeting ISSS - Florence 27.10.16 - 28.10.16 Laboratory statistics and interlaboratory statistics (Round Robins) give us the following idea about what we are measuring:

- (1) How close is my measured value to the true value within certain (statistical) borders when measuring one, two or three times as it is usual in our daily laboratory routine!
- (2) When does a property of a measuring object do not meet the requirements, means failing the specification!!

So what must an accurate measurement procedure always fullfill?

accuracy = trueness (systematical errors) and pecision (random errors)

Dr. Dirk Stegemann: Statistical Aspects of Measuring Uncertainties in Laboratories and Interlaboratory Tests - Technical Meeting ISSS - Florence 27.10.16 - 28.10.16

Some necessary definitions to characterize measured data

(1) The Standard Deviation (SD) S (σ = true value in Normal Distribution)

 $s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n - 1}}$ n-1= estimates the SD of the universe n = estimates the SD of the test

(!) The SD is a measure of the distribution of measured values

(2) The Variance (VAR)

$$s^2 = \frac{1}{(n-1)} \sum_{i=1}^n (x_i - \bar{x})^2$$

(!) The VAR is a measure of how the measured values are distributed around the mean value

Dr. Dirk Stegemann: Statistical Aspects of Measuring Uncertainties in Laboratories and Interlaboratory Tests - Technical Meeting ISSS - Florence 27.10.16 - 28.10.16

We always have to deal with two kinds of statistics:

- (a) the laboratory statistics in your own lab
- (b) the interlaboratory statistics between different laboratories (Round Robins)

Please keep in mind that both statistics about your measurement uncertainties are based on same principles!

trueness (systematical errors) and pecision (random errors)

(a) In your own lab: GUM = $u = \sqrt{u_{R_{W}}^2 + u_{bias}^2}$ (b) In Interlaboratory Tests (Round Robins) = $s_{R} = \sqrt{s_{r}^2 + s_{L}^2}$

Dr. Dirk Stegemann: Aspects of Measuring Uncertainties in Laboratories and Interlaboratory Tests -Technical Meeting ISSS - Florence 27.10.16 - 28.10.16

Let us now talk about the interpretation of interlaboratory tests (Round Robins)

key figure	calculation	meaning
u _x	$u_{C_{ref},i} = 1,25 \cdot \frac{s_{R,i}}{\sqrt{n_{p,i}}}$	Uncertainty of the assigned value x^* 1,25 x 3,75/ $\sqrt{6}$ = 1,911 -> 0,3 x s [*] = 1,12
x *	ISO 13528 DIN ISO 5725-5	robust mean regarding all individual means (assigned value!)
S [*]	ISO 13528 DIN ISO 5725-5	robust mean standard deviation regarding all individual SD's (target value for analytical performance called z-score)
S _r	$s_r^2 = \frac{\sum s_i^2}{p},$	SD of all individual SD's (repeatability)
SL	$ s_{\rm L}^2 = \frac{1}{\bar{n}} \left[\frac{1}{p-1} \sum_{i=1}^p n_i (\bar{x}_i - \bar{\bar{x}})^2 - s_{\rm r}^2 \right]$	SD of all differences from the individual mean to the assigned value x [*]
S _R	$s_{\rm R} = \sqrt{s_{\rm r}^2 + s_{\rm L}^2}$	the overall SD taking into account the precision and trueness

Dr. Dirk Stegemann: Statistical Aspects of Measuring Uncertainties in Laboratories and Interlaboratory Tests - Technical Meeting ISSS - Florence 27.10.16 - 28.10.16

Why are these chracteristic values s_r and s_R so important?

r = 2,8 * s_r (repeatability limit 95 % confidence interval) R = 2,8 * s_R (reproducibility limit 95 % confidence interval)

$$CD = 2.8 \cdot s_{\rm r} \cdot \sqrt{\frac{1}{2n_1} + \frac{1}{2n_2}}$$
How do your employees work?

$$CD = \sqrt{(2.8 \, s_{\rm R})^2 - (2.8 \, s_{\rm r})^2 \left(1 - \frac{1}{2n_1} - \frac{1}{2n_2}\right)}$$
Do two labs have the same performance?

$$CD = \frac{1}{\sqrt{2}} \cdot \sqrt{(2.8 \, s_{\rm R})^2 - (2.8 \, s_{\rm r})^2 \left(\frac{n-1}{n}\right)}$$
y' - m₀: Has the test object failed in your lab?

$$CD = \frac{1}{\sqrt{2p}} \cdot \sqrt{(2.8 \, s_{\rm R})^2 - (2.8 \, s_{\rm r})^2 \left(1 - \frac{1}{p} \sum_{i=1}^{p} \frac{1}{n_i}\right)}$$
y'' - m₀: Has the test object failed in different labs?

2 employees making n_i determinations / 2 labs making n_i determinations p labs making n_i determinations to confirm a reference value m_0

Dr. Dirk Stegemann: Statistical Aspects of Measuring Uncertainties in Laboratories and Interlaboratory Tests -Technical Meeting ISSS - Florence 27.10.16 - 28.10.16

Now, what to do when the critical differences (CD) are exceeded??

Don't worry be happy and ask the DIN ISO 5725 or the EN ISO 4259 Annex 1, because they will tell you what to do to avoid a lawsuit with your customer or to fire one of your employees.

Thank you for having so much patience with statistics and the guy who was talking about it.

For further Informations:

Darell Huff, Irving Geis, *How to Lie with Statistics,* W.W. Norton & Company Ltd, New York, 1954