Institut für Sportstättenprüfung

ISP

ISSS Round Robin 2012

Evaluation and interpretation of the general results

ISSS Technical Conference 2012

Dennis Frank, ISP

1

ISP

ISSS Round Robin so far

Organisation of the ISSS Round Robin 2012

Selected test methods

Selected test samples

Interpretation of the general results

Evaluation of the general results

Discussion

ISSS Round Robin 2013

ISP

ISSS Round Robin so far

Organisation of the ISSS Round Robin 2012

Selected test methods

Selected test samples

Interpretation of the general results

Evaluation of the general results

Discussion

ISSS Round Robin 2013

ISSS Technical Conference 2012

HISTORY

ISP

- 2009 ISSS decided to organise Round Robin on a new level
- 2010 the first total independent Round Robin were conducted
 - the following three test methods were compaired:

Determination of :

INTERNATION shock absorption (EN 14808:2005) IS SURFACE SCIENCES vertical deformation (EN 14809:2005) vertical ball behaviour (EN 12235:2004)

2011 - ISSS decided to proceed with the scheme

2012 - the second Round Robin was conducted

HISTORY

The interlaboratory comparison testing was conducted by:

Contact person: Mr Harald Schilder (Ing.)

ISP

ISSS Round Robin so far

Organisation of the ISSS Round Robin 2012

Selected test methods

Selected test samples

Interpretation of the general results

Evaluation of the general results

Discussion

ISSS Round Robin 2013

ORGANISATION

ISP

- In 2011, a questionnaire was prepaired and sent out to:
 - members of ISSS
 - other test institutes
 - equipment manufacturers
 - consultants
 - installers

- Ten methods were selected and split over the duration of two years

- Samples were chosen and requested by individual manufacturers
- Samples and instruction were sent out by ofi
- The testing was completed within 6 weeks
- The evaluation was returned by the middle of September 2012

7

ISP

ISSS Round Robin so far

Organisation of the ISSS Round Robin 2012

Selected test methods

Selected test samples

Interpretation of the general results

Evaluation of the general results

Discussion

ISSS Round Robin 2013

TEST METHODS

The following five test methods were compaired in 2012:

Determination of

- shock absorption (EN 14808:2005)

INTERNATION-vertical deformation (EN 14809:2005) SURFACE SCIENCES

- thickness (EN 1969:2000)
- slip resistance (EN 13036-4:2003)
- tensile properties (EN 12230:2003)

ISP

ISSS Round Robin so far

Organisation of the ISSS Round Robin 2012

Selected test methods

Selected test samples

Interpretation of the general results

Evaluation of the general results

Discussion

ISSS Round Robin 2013

The following three different products were chosen for 2012:

- synthetic sports surfaces

INTERNATIONAL AS point-elastic PVC floor ORTS SURFACE SCIENCES

- sealed hardwood floor

Synthetic sports surfaces

ISP

Point-elastic PVC floor

ISP

Sealed hardwood floor

TEST PROGRAM

ISP

The following tests were conducted on the following samples:

ISP

ISSS Round Robin so far

Organisation of the ISSS Round Robin 2012

Selected test methods

Selected test samples

Interpretation of the general results

Evaluation of the general results

Discussion

ISSS Round Robin 2013

INTERPRETATION

ISP

Sector Contractor Sector Sec	s submi	tted by p	articipar	its								
i.e., ind	lividual res	ults x _{ik}										
+ numb	er of the t	est repetitio	ns made by	each lab (n	i)							
+ withir	laborator	v means ly .) and stands	ard deviation	ne / e . 1			Number	f reporting la	horatori	ae n *.	21
T WILLIN	riabulatur	y means (x)	j anu stanua		13 (3 []			Number o	f reporting is		sp.	
+ result	s of tests f	or outliers					La como como como	Number o	t reported te	st result	s 2 <i>n i</i> :	42
Lab	Lab Test results in %						Statis	tical evaluatio	n of the	(Outliers	
Code			Test replicat	est replication No. (k)			subn	nitted test res	ults x _{ik}	1		2
No.	1	2	3	4	5	6	n_i	xi	S i	cochi	Grub	1.7
18	36,6	36,3					2	36,43	0,2475			
786	36,3	37,2					2	36,76	0,6187			
900	37,3	36,4					2	36,84	0,5834			
915	37,3	36,4					2	36,85	0,6364			
864	38,1	37,0					2	37,56	0,7955			
472	38,0	37,8					2	37,89	0,0884			
481	37,5	38,3					2	37,90	0,5657			
318	37,7	38,4					2	38,07	0,4844			
569	38,3	38,0					2	38,13	0,1768			
875	38,5	38,5					2	38,51	0,0283			
1	38,9	39,5					2	39,18	0,3889			
627	39,2	39,4					2	39,29	0,1591			
/93	39,0	39,5					2	39,54	0,0884			
772	20.0	35,7					2	39,04	0,0530			
701	40.1	40.0					2	40.06	0,000			
005	40,1	27.9					2	40,00	2,2250	at at		
562	40.0	40.4					2	40 18	0 3182	**		
162	40,0	40,4					2	40,10	0,2828			
803	41.7	41.6					2	41.63	0.0707			
EIE	42.2	42.7					2	42.41	0.3359			V

ISSS Technical Conference 2012

ISP

INTERPRETATION

Results of robust statistics		
Robust average: x* = 38,9	assigned v	alue for the
Robust standard deviation for the proficiency assessment: $s^* = 1,64$	proficience	y assessment
Number of repeate measurements necessary due to s_r/s^* -ratio: $n' = 1$	ОК	see page 4 for the
Standard uncertainty of the assigned value: $u_x = 0,44861$	ОК	meaning of NOT OK

Do the input data come from a normal distribution ? (The results listed below shall be considered as really justified only if the input data come from a normal distribution)						
General mean $\sum n_i x_{ik} / \sum n_i$	m	38,8	%			
Repeatability variance	s, ²	0,1455363				
Repeatability standard deviation	S,	0,38149	%			
Repeatability coefficient of variation	CV%r	0,982	%			
Between-laboratory variance	S _L ²	2,5983125				
Between-laboratory standard deviation	SL	1,61193	%			
Between-laboratory coefficient of variation	CV %L	4,150	%			
Reproducibility variance s R	$s_{r}^{2}+s_{L}^{2}$	2,7438487				
Reproducibility standard deviation	S _R	1,6565	%			
Reproducibility coefficient of variation	CV %R	4,265	%			
Repeatability limit	r	1,07	%			
Relative repeatability limit	r rel	2,8	%			
Reproducibility limit	R	4,64	%			
Relative reproducibility limit	R rel	11,9	%			
Number of participants included in the accuracy evaluation	р	20				
Number of tests included in the accuracy evaluation	Σn	40				

18

INTERPRETATION

ISP

Repeatability limit (*r***):**

A value less than or equal to what the absolute difference between two test results obtained under repeatability conditions may be expected to be with a probability of 95%.

INTERPRETATION

ISP

Reproducibility limit (R):

A value less than or equal to what the absolute difference between two test results obtained under reproducibility conditions may be expected to be with a probability of 95%

ISP

INTERPRETATION

ISP

INTERPRETATION

ISSS Technical Conference 2012

Dennis Frank, ISP

INTERPRETATION

z-score:

The z-score is a measure of the distance of an individual result from the mean; the scale unit is the standard deviation.

The resulting data is assessed as follows:

 $z = \leq 1$ the performance of the laboratory is very goodz = 1 - 2the performance of the laboratory is satisfactoryz = 2 - 3the performance of the laboratory is questionable $z = \geq 3$ the performance of the laboratory is unsatisfactory

INTERPRETATION

ISP

ISP

ISSS Round Robin so far

Organisation of the ISSS Round Robin 2012

Selected test methods

Selected test samples

Interpretation of the general results

Evaluation of the general results

Discussion

ISSS Round Robin 2013

ISSS Technical Conference 2012

Determination of vertical deformation

Number of test laboratories: 21

Sample	Impact	General mean (<i>m</i>)	Repeatab (oility limit r)	Reproduce ()	ebility limit R)				
	2nd	A 2.3 mm ▲ T	0.2 mm	(9.1%)	0.7 mm	S (29.5%)				
	3rd	2.2 mm	0.2 mm	(8.5%)	0.6 mm	(27.9%)				
	2nd	1.2 mm	0.1 mm	(9.6%)	0.7 mm	(63.0%)				
	3rd	1.1 mm	0.1 mm	(9.3%)	0.7 mm	(65.1%)				

26

Determination of shock absorption

Number of test laboratories: 21

Sample	Impact	General mean (<i>m</i>)	Repeatal	oility limit	Reprodu	ucebility limit (R)
	2nd	AS38.9% ATI	1.3%	SP(3.4%)	4.6%	ES (11.9%)
$\mathbf{\mathbf{\nabla}}$	3rd	38.8%	1.1%	(2.8%)	4.6%	(11.9%)
	2nd	28.1%	1.5%	(5.2%)	5.6%	(19.8%)
	3rd	28.0%	1.5%	(5.5%)	5.6%	(19.1%)

Determination of slip resistance

Number of test laboratories: 19

	Direction	Condition	General mean (<i>m</i>)	Repeatability limit (r)		neral Repeatability Reproduce ean limit limit m) (r) (R)		lucebility mit <i>R</i>)
	diagonal	wot	60	6.3	(11.1%)	18.8	(33.0%)	
	90°	wet	57	6.7	(11.8%)	19.7	(34.6%)	
	diagonal	day	78	10.1	(13.0%)	60.3	(77.6%)	
	90°	ury	77	3.3	(4.3%)	69.7	(90.6%)	

28

Determination of slip resistance

ISSS Technical Conference 2012

Dennis Frank, ISP

ISO 17025 laboratories only (ofi - 30.10.2012) Determination of slip resistance

Number of test laboratories: 7 - 8

	Direction	Condition	General mean (<i>m</i>)	Repeatability limit (r)		Reproducebility limit (R)	
	diagonal	wet	58	6.3	(10.9%)	17.4	(29.9%)
	90°		58	6.9	(12.0%)	19.0	(33.0%)
	diagonal	day	71	2.3	(3.2%)	45.2	(63.4%)
	90°	ury	76	3.0	(4.0%)	53.5	(70.8%)

Determination of thickness (ofi – 30.10.2012)

Number of test laboratories: 15 - 16

Sample	Impact	General mean (<i>m</i>)	Repeatability limit		Reproducebility limit		
	overall	A14.64 mm	0.46 mm S	P(3.2%)S	2.71 mm	(18.5%)	
	layer	5.71 mm	0.28 mm	(5.0%)	10.79 mm	(189.0%)	
	overall	8.11 mm	0.08 mm	(0.9%)	0.21 mm	(2.5%)	

Thickness - layer

Synthetic surface

	E Alternative restored	and the second se	and the second second	second in the second	Record and the second
Rocii	TC CII	hmittor	hv	nartici	nante
Nesu	1.5 54	SIIIILEU		partici	Danco
			and the second second	and the second s	Section 1 and a section

i.e., individual results x ik

+ number of the test repetitions made by each lab (n_i)

+ within laboratory means (x_i) and standard deviations (S_i)

+ results of tests for outliers

EN 1969

ISP

Number of reporting laboratories p *:	16
Number of reported test results Σn_i :	32

Lab		Test re	sults in	mm	_	_	Statistical evaluation of the				Outliers		
Code			Test replica	tion No. (k)			submitted test results <i>x</i> _{ik}			ar.	105	2	
No.	1	2	3	4	5	6	n _i	x _i	S _i	cochi	Grubt	17	
481	3,32	3,32					2	3,323	0,0014				
515	3,40	3,75					2	3,575	0,2475				
-39	4,06	3,30					÷	3,683	0,5388	**			
772	3,70	3,70					2	3,698	0,0028				
889	4,00	3,88					2	3,937	0,0834				
247	4,13	3,85					2	3,990	0,1980				
875	4,02	4,03					2	4,026	0,0085				
864	4,02	4,18					2	4,101	0,1089				
472	4,46	4,25					2	4,358	0,1499				
900	4,46	4,43					2	4,445	0,0156				
803	4,61	4,59					2	4,599	0,0099				
800	4,77	4,76					2	4,765	0,0071				
162	4,80	4,78					2	4,790	0,0141				
986	5,92	5,95					2	5,935	0,0240			x	
701	14,55	14,41					2	14,482	0,0990			x	
1	15,63	15,66					2	15,644	0,0226		*	x	

Tensile Properties

Determination of maximum strength

Number of test laboratories: 15

Sample	Direction	General mean (<i>m</i>)	Repeatability lim	it Reproducebility limit (R)
	atignal	AS 656 kPa TIC	44 kPa (6.7%)	127 kPa (19.4%)
	II	661 kPa	56 kPa (8.5%)	116 kPa (17.5%)
	Ι	2458 kPa	165 kPa (6.7%)	286 kPa (11.6%)
	II	2433 kPa	212 kPa (8.7%)	324 kPa (13.3%)

33

Tensile Properties

Determination of tensile strength at break

Number of test laboratories: 14

Sample	Direction	General mean (<i>m</i>)	Repeatability limit (r)	Reproducebility limit (R)	
	atignal	AS 605 kPa TO	52 kPa (8.6%)	152 kPa (25.2%)	
	II	604 kPa	60 kPa (9.9%)	165 kPa (27.4%)	
	Ι	1986 kPa	146 kPa (7.3%)	430 kPa (21.6%)	
	II	1988 kPa	287 kPa (14.4%)	434 kPa (21.8%)	

Tensile Properties

Determination of elongation at break

Number of test laboratories: 14

Sample	Direction	General mean (<i>m</i>)	Repeatability limit (r)		Reproducebility limit (R)	
INTERN	atignal	ASS 78.3% TIC	8.8%	(11.2%)	78.6%	(100,3%)
	II	77.4%	6.8%	(8.8%)	74.6%	(96.5%)
	Ι	212.6%	41.9%	(19.8%)	268.5%	(126.3%)
	II	190.5%	34.2%	(18.0%)	171.9%	(90.25%)

35

ISP

EVALUATION

ISSS Technical Conference 2012

Dennis Frank, ISP

ISP

EVALUATION

INTERNATIO

ISSS Technical Conference 2012

Dennis Frank, ISP

ISP

ISSS Round Robin so far

Organisation of the ISSS Round Robin 2012

Selected test methods

Selected test samples

Interpretation of the general results

Evaluation of the general results

Discussion

ISSS Round Robin 2013

ISSS Technical Conference 2012

DISCUSSION

The variations in the results could rely on the following reasons:

- missunderstanding of the instructions
- undetailed instructions

NTE-undetailed information of the standard SPORTS SURFACE SCIENCES

- calibration of the used test equipment
- unsuitable test equipment
- inappropriate test method
- ISO 17025 accreditation of the test institutes

DISCUSSION

How do we proceed with this information?

To use this data properly, all the results need to be broken down.

- additional information have to be supplied by the laboratories
- false results need to be excluded or corrected
 - additional testing need to be conducted
 - recalculation of the results under the following aspects:
 - ISO 17025 accreditation of the test institue
 - ISO 17025 accreditation for the test method
 - exclusion of all "outliener"

40

ISP

ISSS Round Robin so far

Organisation of the ISSS Round Robin 2012

Selected test methods

Selected test samples

Interpretation of the general results

Evaluation of the general results

Discussion

ISSS Round Robin 2013

ISSS Technical Conference 2012

Round Robin 2013

ISP

The following tests will be conducted on the following samples :

ISP

ISSS Round Robin so far

Organisation of the ISSS Round Robin 2012

Selected test methods

Selected test samples

Interpretation of the general results

Evaluation of the general results

Discussion

ISSS Round Robin 2013

Thank you for your attention

ISP

Dennis Frank

Laboratory Manager

ISP - Institut für Sportstättenprüfung

Dr. Uwe Schattke

Südstr. 1a D-49196 Bad Laer

Germany

www.ISP-Germany.cm D.Frank@ISP-Germany.com

T: +49 5424 80 97 891 M: +49 170 73 250 49