ISSS Technical Meeting Vienna 2004

(Artificial) Aging of Synthetic Turf

By Konrad Binder

Consultant

ofi – Technologie & Innovation GmbH, Vienna

1st European Weathering Symposium EWS – Prague 2003 XXIII Colloquium of Danubian Countries on Natural and Artificial Ageing of Polymers

Comparative Examinations under Different Weathering Conditions

Eduard POHLE Leopold KRANNER

2

Most relevant European Documents and Standards concerning Artificial Weathering

• CEN/TC 217/WG6 N 560 (9th draft, 2002-12):

Surfaces for Sports areas
Synthetic turf for Football, Hockey, Tennis and Multi-Sports
primarily designed for outdoor use
<u>Specification</u>

- CEN: prEN 14836: Synthetic surfaces for outdoor sports areas Method of test – <u>Artificial weathering</u>
- (EN) ISO 4892: Plastics Methods of exposure to laboratory light sources:
 - Parts 1- 4

Content of prEN 14836 – Special Features and Aspects

(based on recent German version)

 Normative References (among others): (EN) ISO 4892: Plastics - Methods of exposure to laboratory light SOURCES –

- Part 1: General guidance
- Part 2: Xenon arc sources.
- Part 3: Fluorescent UV lamps (no reference – just forgotten?)
- Pinciple: Test pieces are exposed to artificial weathering... colour and selected physical properties are determined.
- Light source: UV-A 340 nm lamps
- Exposure Chamber
 - Temperature and irradiation control according to ISO 4892-1
 - Spraying with water or wetting by a humidity condensing mechanism according ISO 4892-2 and –3.

Exposure conditions (recommended)

- 4 h dry UV exposure at a blackstandard temp. of 55±3 °C
- 2 h of condensation exposure, without radiation, black stand. temp. 45±3 °C
- (this cycle is not listed in ISO 4892-3)
- Procedure: No obligatory time or other conditions.
- Measuring / Expression of results
 - Colour changes according to ISO 7724 and ISO 105-A02
 - Physical properties (change in %):
 - Measures
 - Tensile strength
 - Friction
 - Shock absorption
 - Vertical (?) Deformation

Discussion of prEN 14836 – Questions

Some of the main flaws should be eliminated, e.g.:

- Simply by reference to EN ISO 4892-3
- Especially the irradiance on the face of the samples must be specified exactly.

Selection of properties for evaluation

- Should be left to the relevant specification of the special sports surface.
- This has been done already in the paper N 560 specifying synthetic turf:
 - Tensile strength (of fibre).
 - Colour fastness
- Checking other properties (as a criterion) seems to be useless

Further open questions:

- Aging of rubber granules
- Aging of EPDM granules
- How can we achieve sufficient repeatability of the results ?
- How can we find out the statistical tolerances ? (which could be extremely high).

Finally once more the question:

- Can "perfect" correlation to natural weathering really be achieved by the UV-A lamps ?
- Or do we need the well-tried and approved Xenon arc ?

Outdoor and Artificial Aging of Polymers - Basics

Main agents of outdoor Aging:

- Sun light (short-wave UV)
- Oxygen
- Heat
- Water
- Frost-dew
- Mechanical stress, abrasion
- Main effects of aging on chemical structure
 - Oxidation (foto-, thermoxidation)
 - Chain-break and
 - degradation

Change of material performance

- Loss of elongation at break
- Loss of tensile strength
- → <u>brittleness</u>
- → increasing abrasion
- Loss of colour
- Change of sports performance: Long-term effect is a consequence of many other factors as well.

Search for test methods for Polyethylene and Polypropylene

These polymers are similar, both are polyolefins.

Aging by weathering is a very complex chemical process and the polyolefins are very senitive to degredation by UV, oxygen and high temperatures.

Therefore the polymers must have high quality and a high quality UV stabilizer system (including effect of heat).

How can this quality be verified ?

By means of an effective and reliable test method taking into account the special structure of the relevant polymers !

Ultraviolet and Visible Part of Sunlight

ofi - Sports Technology

Spectral Irradiance of Xenon Arc Lamps

Spectral Irradiance of Fluorescent UV-Lamps

Principle of UV-Weathering Device

Effects of Brittleness Caused by Outdoor Weathering

PE-HD slab: 9 years exposed in vienna

PP-Films with different stabilizers.

Exposed 450 days in Vienna.

Start: Summer

Results of tensile strength tests

ISSS TM Vienna - Aging - Binder

Artificial Aging of PP-Fibres in QUV-Chamber IST - Kolitzus

Direct exposure of separated fibres showed damage – as on site

Artificial Weathering of Polypropylen Materials: Change of Tensile Strength

Artificial Weathering of Polypropylen Materials: Change of Elongation at Break

Artificial Weathering of Synthetic Turf: Austrian Test Method

- Preparing of fibres for tensile test specimens (if necessary glued between acrylic clamps)
- Artificial aging (7500 MJ/m²) according to
 - DIN 53 387 (ISO 4892-2)
 - ◆ (EN ISO 4892-3 ?)
- Tensile strength tests according to EN 13864
- Requirements for elongation at break and strength:
 - Retained values ≥ 50 % (of initial values)
- (Colour fastness: ≥ 3 grey scale)

PTFE

PE-HD Space filling model

- Requirements for the test method concerned:
 - High acceleration by artificial weathering
 - Good correlation to outdoor weathering
 - Good quantifiable results of damages by artificial weathering
 - Cost effectiveness

ISSS TM Vienna - Aging - Binder

Weathering Chamber Fitted w/ Xenon Arc Lamps

Which light source for artificial weathering?

PA-6.6 Space filling model

- The main problem is a good balance of A and B. The "heart" of every weathering device is the "artificial sun" - most successful examples:
 - Xenon arc *)
 - UV fluorescent lamp *)
 - Carbon arc lamp
 - Metal halide emitter.
 - For plastics, there is sufficient experience with these two *) light sources only.

Labosport – internal study for tropic islands

Good correlation between the results on site (8 month) and artificial aging

			Tensile strength		Calorimetry
	Study Nr.	Appearance	Force (N)	Losses (%)	Melting heat (°C)
Polyethylen	1	Fibrillée	53.2	-27.6	-0.3
	2	Fibrillée	42.0	-32.7	-0.9
	3	Fibrillée	26.3	-25.6	0.0
	4	Fibrillée	34.1	-29.4	-0.8
	6	Fibrillée	26.6	-24.3	-0.2
	9b	Fibrillée	7.3	-17.3	-0.4
	9a	Monofil	6.0	-43.9	-0.9
copolymer	5	Monofil	13.8	-58.1	-2.7
	7	Monofil	11.1	-57.1	-2.8
	8	Monofil	13.9	-72.6	-4.5
CO.	10	Monofil	16.4	-75.8	-4.2
Fibers after ageing (UV B lamps)			2 500 hours		
Force at break in N (after ageing)					
losses related	ce before a	geing			
Melting point : difference between the temperature after and before ageing					